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Abstract. We present a detailed study of the nearest-neighbour ferromagnetic Ising model on
a Cayley tree. In the limit of zero field, the system displays glassy behaviour below a crossover
temperature,Tg , that scales inversely with the logarithm of the number of generations; thusTg
is inversely proportional to the logarithm of the logarithm of the number of sites. Non-Gaussian
magnetization distributions are observed forT < Tg , reminiscent of that associated with the
central spin of the Edwards–Anderson model on the same tree; furthermore, a dynamical study
indicates metastability, long relaxation times and ageing consistent with the development of
glassy behaviour for a finite but macroscopic number of sites.

1. Introduction

Recursive structures like the Bethe lattice and the Cayley tree provide a pedagogical
environment for the study of physical problems; in this setting they can be treated with
a direct analytic approach without resorting to approximate methods [1]. The Bethe lattice,
an infinite Cayley tree, is a connected dendritic structure with constant coordination,z, and
no loops, as displayed forz = 3 in figure 1. Strictly speaking it is apseudo-latticesince
it cannot be embedded in anyreal finite-dimensional lattice; indeed it is often regarded
as an infinite-dimensional structure since the number of sites accessible inn steps from a
given site (∼ nd for a d-dimensional lattice) increases exponentially withn. Thus the Bethe
lattice provides a setting where mean-field treatments can become exact. This property
was first discussed by Domb who showed that the Bethe–Peierls (BP) approximation to the
nearest-neighbour (NN) ferromagnetic (FM) Ising problem, withH = −J ∑

(ij) σiσj where
J > 0, σi = ±1 and(ij) indicates a nearest-neighbour sum, is exact on this structure [2];
its solution is identical to that of the infinite-range FM Ising model [3]. Similarly Thouless
et al studied the infinite-range Sherrington–Kirkpatrick (SK) model of spin glasses on the
Bethe lattice using a mean-field technique [5]; they were able to recover the key results
[6] of Sherrington and Kirkpatrick (SK) without using the replica method. More recently
there have been several studies of the SK model on the Bethe lattice, particularly in finite
fields [7–15]. In general the study of a variety of problems on this recursive structure has
helped to develop our understanding of diverse physical phenomena including self-avoiding
polymers [16], random resistor networks [17] and percolation [18].

Like the Bethe lattice, a Cayley tree is a connected structure with a fixed coordination
number and no loops; however, it has afinite number of generations (cf figure 1) and hence
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Figure 1. (a) A finite Cayley tree and (b) a section of a Bethe lattice with coordinationz = 3.

sites that are dominated by the boundary. More specifically, the total number of sites in a
Cayley tree ofn generations with coordinationz is

N = 1 + z + z(z − 1)+ · · · z(z − 1)n−1 = (z(z − 1)n − 2)

(z − 2)
(1)

and the number of surface atoms is

Ns = z(z − 1)n−1 (2)

so that for largen

lim
n→+∞

Ns

N
= (z − 2)

(z − 1)
(3)

in contrast to the situation in ‘real’ lattices(Ns
N

∼ N− 1
d ). Thus the ‘surface’ of a Cayley

tree, in the limit of a large number of generations, contains a finite fraction of its total
number of sites, and the boundary plays a key role in any problem studied on this graph.
In particular, the Bethe–Peierls transition for the FM Ising model on a Cayley tree occurs
only for its central spin; despite its finite moment, the total spontaneous magnetization of
all the spins remains zero [20–23]. In a nutshell this occurs because at zero field and low
temperatures very large domains of flipped spins can nucleate from the boundaries; the
resulting finite-size glassiness is the subject of this paper.

The recursive structure of the Cayley tree permits a detailed analysis of the single-
site magnetization distribution as a function of field and generation. There are two ways
of handling Cayley trees. One way consists of decimating the spins on the boundary of
a tree withn generations; one is left with a tree ofn − 1 generations and a magnetic
field at the boundary, and one reiterates the process. This procedure is reminiscent of
the Kadanoff renormalization scheme, and is implemented in section 2. Another way of
treating trees is to glue togetherz − 1 n-half-space trees to a common ancestor to obtain
an (n + 1)-half-space tree. By ann-half-space tree, we mean a tree ofn generations such
that the ancestor hasz − 1 neighbours instead ofz as for a complete tree. See figure 2
for a view of howz − 1 half-space trees are put together. Since the links are statistical
independent variables, the thermodynamic properties of the(n+1)-half-space tree are easily
expressed in terms of the thermodynamic properties of ann-half-space tree. We use this
technique in section 3. In doing so, we find that for fieldsh < hc0, where the crossover
field hc0 decreases exponentially with the number of generations, there is a temperature-
scaleTg below which well-defined, large domains of flipped spins exist. ForT < Tg the
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magnetization distribution becomes non-Gaussian, reminiscent of that associated with the
central spin of the magnetized spin glass phase of the±J model on the Cayley tree. The
crossover temperature,Tg, scales inversely with the logarithm of the number of generations
of the Cayley tree so that the ‘finite-size’ glassiness persists to very large system sizes for
a macroscopic number of sites.

Figure 2. A recursive construction of half-space trees.

We therefore have a short-ranged spin model that has a ‘glass’ crossover temperature
that decreases very slowly with increasing system size; more specifically it is inversely
proportional to the logarithm of the logarithm of the number of sites. We characterize it
using a combination of analytic and numerical techniques, always retaining open boundary
conditions. First we study the magnetization for different thermodynamic limits emphasizing
the crucial role of the ratio of surface/bulk sites asn → ∞. We recover the Bethe–Peierls
result if this ratio goes to zero; specifically for the central spin only. Otherwise, for vanishing
applied fields, there is a crossover to a glassy phase characterized by well defined clusters
of flipped spins. We find in that forh < hc0, the single-site magnetization distribution
becomes non-Gaussian forT < Tg similar to that of spin glass models residing on the same
structure; however, it recovers its Gaussian character with increasing field. ForT < Tg the
largest barriers associated with developing broken bonds in these domains scale with the
number of cluster sites; we thus refer to this low-temperature state as a finite-size glass. A
dynamical study of this system, performed numerically, indicates the presence of metastable
states and long relaxation times at low temperatures. The autocorrelations forT < Tg are
determined after a waiting time, and indicate ageing effects; the variations ofχ ′

1 andχ ′
3 with

temperature also agree with the presence of glassiness. As expected, the Edwards–Anderson
susceptibility of the entire tree has a maximum which develops slowly with system size; no
divergence is observed. We end with a summary of our results and plans for future work.

2. The different thermodynamic limits on the Cayley tree

2.1. Warm-up: the Bethe–Peierls transition of the central spin

One way to take the thermodynamic limit on ann-generation Cayley tree is to looksolely at
the properties of its central spin, and then to take the limitn → +∞. As first pointed out in
[4], the behaviour of the central spin is then characteristic of an infinite-dimensional lattice;
more specifically it displays a mean-field transition. In other words, the Bethe–Peierls
approximation becomes exact on a finite Cayley tree if and only if one considers solely the
properties of its central spin and ignores its surface. For recent results in this field, we refer
the reader to reference [16]. In appendix A we give the calculation of the recursion relation
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for the partition functionZn(β,H,Hn) of an n-generation tree with coordinationz; here
β is the inverse temperature andH andHn are the magnetic fields acting on the spins of
generations 0 ton−1 andn respectively. The resulting recursion relation forZn(β,H,Hn)
is

Zn(β, h, hn) = (4(cosh2(βJ )+ sinh2(βhn))
(z−1)n/2Zn−1(β, h, h+ T hn) (4)

where the transformation of the magnetic field is

T h = z − 1

2β
ln

coshβ(J + h)

coshβ(J − h)
. (5)

We consider the special case of a small fieldε applied at the surface of a tree, and ask
whether it is amplified in the bulk as determined by the recursion relation (5). This condition
defines the bulk critical temperatureβc by the expression(z−1) tanhβcJ = 1. If β < βc, the
magnetization of the central spin is zero; however ifβ > βc, there is a broken symmetry for
the central spin in the thermodynamic limit. As discussed in [3], the critical behaviour of the
central spin in the thermodynamic limit is identical to that of an infinite-range ferromagnet
where β ′ = 1

2 and δ = 3. Note here that we useβ ′ to distinguish from the inverse
temperature.

2.2. Beyond the Bethe–Peierls regime: different thermodynamic limits

We now wish to look at the transition, not only of the central spin, but of the entire tree.
First we consider onlyhalf-space trees, that is trees such that the coordination associated
with the ancestor isz−1 and notz. We shall label the generations so that the ancestor is at
generationn and the leaves are at generation 0. We are interested in the magnetic properties
of the spins in generationsn−m to n in the limit n → +∞ where, of course,m is a function
of n; more specifically we want to classify the different regimes as a function ofm(n) in
an external uniform fieldh. In order to obtain the magnetization of the generationsn−m

to n, we must apply a source magnetic fieldλ to these generations; then we differentiate
the partition function with respect toλ in the limit λ → 0 to obtain

〈M(n,m, h)〉 = ∂

∂(βλ)
lnZ(n,m, h, λ = 0). (6)

Details of the calculation are provided in appendix B. There exist two regimes for the
iteration of the magnetic field:i < nc(h) and i > nc(h), where nc(h) is given by
equation (B8) andi is the distance from the boundary. We thus have to distinguish between
three regimes: 06 nc 6 n−m (regime (I)),n−m+ 1 6 nc 6 n (regime (II)) andnc > n

(regime (III)).

2.2.1. Regime I:0 6 nc 6 n − m—large fields. The details of the calculation are given
in appendix B. We obtain that, in this regime, the magnetization per site between the
generationsn−m andn tends to a constant in the thermodynamic limit

lim
〈M(n,m, h)〉

Nm
=

(
b2 + a2

h

η2

)
z − 1

z − 2 + η2
(7)

wherea2 andb2 are related to the temperature (see (B15) and (B16)).
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2.2.2. Regime II:n − m + 1 6 nc 6 n—intermediate fields. In this regime, we find that
if T ′ < T < Tc, the dominant term in the normalized magnetization is proportional to the
magnetic fieldh, with corrections proportional tohα, where the exponentα is given in
appendix B. The temperatureT ′ is defined by tanh(β ′J ) = 1/

√
z − 1. In the temperature

regime whereT < T ′, the leading term of the magnetization is of orderhα.

2.2.3. Regime III:nc > n—vanishing fields. We show in appendix B that, ifT > T ′, the
susceptibility per spin tends to a constant asn → +∞, m → +∞ andn−m is constant.
In the regime whereT < T ′, the susceptibility per spin is proportional to

χ(m) ∝ (z − 1)m(1 − 4me−2βJ ). (8)

If T > Tg = 2J/ lnm, the critical behaviour is cut-off, whereas ifT < Tg, the susceptibility
per spin is critical. The crossover temperatureTg is rederived by different methods in what
follows.

2.3. Correlation length

The aim of this section is to calculate the size above which the central spin is decorrelated
from the boundary spin in a zero magnetic field. This is another way of calculatingTg.
If the system size is smaller than this typical size, the system is critical. The two points
correlation〈6σ 〉 is

〈6σ 〉 =
n∑
k=0

(
n

k

)
(−x)k(1 − x)n−k = (1 − 2x)n ' 1 − 2nx (9)

where6 is the spin of the ancestor andσ is the spin variable on the leaf.x is the probability
that two neighbouring spins are antiparallel:

x = e−βJ

eβJ + e−βJ . (10)

The system is thus critical providednx � 1, that isT < Tg ' J/n.

3. Magnetization distribution and finite-size effects

Next, we study the distribution of the magnetization which can be determined from exact
recursion relations. We find that finite-size effects are crucial in this analysis, and we
recover the crossover temperatureTg discussed in the previous section. We also compute
the distribution of the magnetization in finite field.

3.1. Magnetization distribution in zero field

We begin with the case of zero magnetic field. Givenz − 1n-half-space trees with
coordinationz, it is straightforward to obtain an(n + 1)-half-space tree with the same
coordination. One just has to add a common ancestor and to link it to thez − 1 ancestors
of eachn-tree (see figure 2). In order to get a full tree, one has to ‘glue’z half-space
trees instead ofz − 1 at the last step. LetPσn (M) be the conditional probability for an
n-half-space tree to have a magnetizationM, given that the spin of the ancestor isσ . Of
course, ∑

M

Pσn (M) = 1. (11)
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The recursion relation forPσn (M) is

Pσn (M) =
∑

M1,...,Mz−1

δ(M − (M1 + · · · +Mz−1 + σ))

z−1∑
k=0

(
k − 1
k

)
xk(1 − x)z−k−1

×
k∏
i=1

P−σ
n−1(Mi)

z−1∏
i=k+1

Pσn−1(Mi) (12)

where x is the probability for breaking one bond. The initialization of the recursion is
given byP σ1 (σ

′) = δσ,σ ′ . This recursion can be performed numerically, at least for a small
number of generations. The result is plotted in figure 4 forz = 3 and 10 generations.
For a finite-size tree and at low temperature, the magnetization distribution presents a non-
Gaussian structure, reminiscent of the magnetization distribution of the central spin in Bethe
lattice spin glasses [10, 14]. Notice that the temperature which controls the departure from
the Gaussian distribution is lower than the bulk transition temperature.

Figure 3. hindi+1(hi) wherehi is the total magnetic field at generationi, andhindi+1 is the iterated
field of equation (5). From bottom to top, the curves correspond toβ < βc, β = βc andβ > βc.

In order to determine precisely this temperature, we compute the recursion relations for
the average magnetization. Using the recursion relations (12), we find

〈M〉+n+1 = 1 +
z−1∑
k=0

(
z − 1
k

)
xk(1 − x)z−k−1(k〈M〉−n + (z − k − 1)〈M〉+n ). (13)

It is clear that, sinceP+
1 (σ ) = P−

1 (−σ), for all n, P+
n (M) = P−

n (−M), so that
〈M〉+n + 〈M〉−n = 0. Putting this equation into (13) and using the well known relations
for the sum of binomial series, we obtain〈M〉+n+1 = p〈M〉+n + 1 and〈M〉+0 = 1 wherep is
defined asp = (z − 1) tanhβJ . This recursion can be easily solved, and one gets

〈M〉+n
Nn

= z − 2

p − 1

pn+1 − 1

(z − 1)n+1 − 1
(14)

whereNn is the number of sites of ann-half-space tree, given by (B17). The structure of
the distribution of magnetization is non-Gaussian provided 2x2n � 1, that is

T < Tg = 2J

ln n
= 2J

ln(lnNn/ ln(z − 1))
. (15)



Glassy behaviour in the ferromagnetic Ising model 5779

Figure 4. The probability density of the magnetization on a half-space tree wheren = 10,
z = 3, the ancestral spin is fixed, and the inverse temperature isβ = 3.

It is clear that the temperatureTg (which will be identified with the glass temperature)
decreases very slowly with the system size. For instance, in limit whereN ' 6.02× 1023

andz = 3, Tg = J/4.4. We conclude from this analysis that finite-size effects persist in the
limit of a macroscopic number of sites. ForTg to be drastically reduced, one should consider
systems of size exp(6.02×1023)(!). Since the appearance of glassiness is a finite-size effect,
we stress thatTg is a crossovertemperature scale even for macroscopic systems.

3.2. Structure of the magnetization distribution forT < Tg

We would like to understand qualitatively the structure of the maxima of the magnetization
probability distribution belowTg; more specifically we want to localize the maxima and
calculate their weight. To do this, we use the normalized continuous magnetization variable
m = M/Nn ∈ [−1, 1] and the associated densityρn(m) = NnP

+
n (M). The recursion

relations forρn(m) are derived in a straightforward fashion from those forP+
n (M) that are

shown in (12). Since this relation is a convolution, we write the recursion in terms of the
Fourier transformρ̃n(k) of ρn(m):

ρ̃n(k) =
∫ +∞

−∞
eikmρn(m) dm (16)

where we have neglected the contribution of the ancestor. That is, we assumed that
Nn+1 ' (z − 1)Nn. We obtain the recursion of thẽρs:

ρ̃n+1(k) =
(
xρ̃n

(
− k

z − 1

)
+ (1 − x)ρ̃

(
k

z − 1

))z−1

(17)

ρ̃0(k) = eik. (18)
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Figure 5. The conditional magnetization distribution in the presence of a magnetic field, the
field being parallel to the central spin. The magnetization distribution is plotted for az = 3
tree, n = 10 generations, and for magnetic fieldsH = 0, 0.001, 0.002. The magnetization
distribution evolves towards a Gaussian shape as the magnetic field increases.

We now study the special casez = 3 where the formulae are simpler. It is easy to check
by recursion that

ρ̃n(k) = (1 − 2x(2n − 1))eik + 2x
n−1∑
α=0

2α exp

(
i

(
1 − 1

2α

)
k

)
+ O(x2). (19)

As we shall see later, this low-temperature expansion is meaningful belowTg even in the
presence of a finite density of kinks. The expansion (19) tells us thatρn(m) has peaks for
mα = 1 − 1/2α, whereα ∈ 〈0, . . . , n− 1〉. Moreover, we find that the weight of the peak
α + 1 is twice that ofα. Inspection of figure 4 indicates that this prediction is correct, at
least in the region where the overlap between the peaks is small.

These results can also be interpreted in the following fashion. The expansion (19) at
order x means that the magnetization density is calculated at the order of one kink. It is
clear that a single kink at generationn− α leads to a magnetization 1− 1/2α and that the
number of choices to put a kink at generationn− α − 1 is twice the number of choices to
put a kink at generationn−α, which is the content of equation (19). What is striking is that
belowTg, this one kink picture is valid, even though we deal with a finite density of kinks
x. This means thatTg is the temperature below which the kinks are rarely nested. In order
to check this assertion, we determine the condition for the kinks to ‘induce’ well-defined
domains of flipped spins; this criterion will determine the validity of the expansion (19).
The overlap between the domains induced by the kinks is small providedxNn〈S〉n < Nn.
In this expression,〈S〉n is the average size of a domain of flipped spins induced by a single
kink. The number of descendants of a kink at leveln − p for an n-half-space tree is
Sp,n = 1 + 2 + · · · + 2n−p = 2n−p+1 − 1. The average overp of Sp,n is

〈Sp,n〉n =
∑n

p=1 2pSp,n∑n
p=1 2p

= n
2n

2n − 1
− 1 ' n− 1. (20)

The condition for ‘non-overlap’ isxn < 1 which is justT < Tg. We conclude that for
T < Tg, the number of kinks is small enough for the system to develop well-defined domains
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of flipped spins. In this temperature regime, the excitations of the spin system are kinks
which are local in the bond variables but arehighly non-local in terms of the spins.

3.3. Magnetization distribution in a magnetic field

The magnetization distribution in a magnetic field can be computed using

Pσn,h(m) = Pσn,0(m)e
βmh∑

m′ P
σ
n,0(m

′)eβhm′ . (21)

The conditional magnetization distribution (the central spin being parallel to the field) is
found to converge rapidly to a Gaussian as the field increases. Since large domains of
flipped spins do not survive in a magnetic field, the crossover field is expected to decrease
drastically with the system size. Indeed, we have shown previously that the crossover
field hc0 of equation (B28) decreases exponentially with the number of generations. The
distribution of magnetizations is plotted on figure 5, where the central spin is taken to be
parallel to the field.

4. Conclusion on the thermodynamics

We have thus shown the existence of a temperature 2J/n below which the susceptibility
per spin is critical (section 2.2.3). Below a temperature of the orderJ/ ln n, the spin
system is critical in the sense that the ancestor tends to point in the same direction as
the spin on the leaves (section 2.3). By calculating the magnetization of the spin system,
we have shown that the spin system is magnetized below a crossover temperature of the
order 2J/ ln n (section 3). The condition for non-overlap of domains leads to a temperature
scaleJ/ ln n below which the domains are weakly overlapping. We callTg the temperature
scaleTg ∼ J/ ln n. From the analysis of the ferromagnetic Ising model on fractals and
percolation clusters [18], where the system is also critical belowTg ∼ 1/ lnNn, we expect
that the dynamics is also critical belowTg, with the existence of a glassy-like relaxation.
We now study the dynamics of the Ising model on the Cayley tree at low temperatures.

5. Barrier structure

Since a glass transition or a glass crossover is dynamical in nature, we first study the energy
barriers. We have shown that the excitations belowTg are broken bonds. In order to
characterize the dynamics, we calculate the barriers associated with these excitations. The
energy barriers at zero temperature of a half-space tree are defined as follows. One starts
with a configuration where all the spins are up and then one considers single-spin-flip paths
from the initial configuration to a final one where all the spins are reversed. To each such
single-spin-flip path, we associate the maximal energy reached during the ‘passage’ from
the initial to the final configuration where we take the energy of the former to be zero.
Then the barrier is defined as the minimum over all the paths of the maximum energy of
one path. Typically, the Monte Carlo algorithm samples all the paths in an ergodic way;
by contrast the Swendsen–Wang algorithm [19] does not generate paths with respect to
the single flip. In appendix C we give details of the calculation of the barriers associated
with the n-half-space tree. Here we calculate the number of states with a given barrierEbα
at a given temperature belowTg, for a full n-tree. Following our previously established
convention, the leaves and the centre reside at the first and thenth generation respectively.
We note there existn∗ kinks at a given temperature wheren∗ = Nx. The barrier for a
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configuration ofn∗ kinks is assumed to be only a function of the generationα of the kink
which is closest to the origin. In order to calculate the number of states with an energy
barrierEbα, we have to enumerate all the configurations with no kink between generation
α+ 1 andn, nα kinks at generationα andn∗ − nα kinks between generationsα− 1 and 1.
We call the number of such configurations of kinksg(α). We make the approximation that
the energy barrier of all these configurations isEbα so that its lifetime is, according to the
Arrhenius law,

τα = τ0 exp(λβEbα) (22)

whereλ is a constant. Such a configuration of kinks is displayed in figure 6. Clearly, we
have

g(α) =
n∗∑
nα=1

gα(nα) (23)

with

gα(nα) =
(
z(z − 1)n−α−1

nα

) (
z
z−2((z − 1)n−1 − (z − 1)n−α)

n∗ − nα

)
. (24)

We can calculate the sum and obtain

g(α) =
(

z
z−2((z − 1)n−1 − (z − 1)n−α−1)

n∗

)
−

(
z
z−2((z − 1)n−1 − (z − 1)n−α)

n∗

)
(25)

and we get the probabilityP(α) for the system to be in a valley with a barrierEα:

P(α) =
(
N

Nx

)−1 [(
N(1 − (z − 1)−α)

Nx

)
−

(
N(1 − (z − 1)−α+1)

Nx

)]
(26)

Figure 6. A typical configuration of the tree withn = 8 andβ = 1.5. The vertices with no dots
represent up spins and the dots represent flipped spins. Each kink gives rise to a well-defined
domain of flipped spins.
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where we have normalized by the total number of accessible states at a given temperature
on ann-tree. We have also approximated the number of sites as follows:

N = z(z − 1)n−1 − 2

z − 2
' z(z − 1)n−1

z − 2
. (27)

Assuming both thatx � 1, and that(z − 1)−α � 1, and using Stirling’s formula, we get

P(α) ' exp

(
− Nx

(z − 1)α

)
− exp

(
− Nx

(z − 1)α−1

)
. (28)

If Nz/(z − 1)α � 1, we obtain

P(α) ' Nx
z − 2

(z − 1)α
. (29)

As expected,P(α) decreases as a function ofα, which indicates that the long-lived states
are less numerous than their short-lived counterparts. At low temperatures, there is thus a
hierarchy of relaxation times.

6. Glauber dynamics

We now study the Glauber dynamics of the spin system on the Cayley tree.

6.1. The Glauber matrix

We begin with a general discussion of Glauber dynamics. Letp({σ }, t) be the probability
for the system to be in a state{σ } at time t . Following Glauber [24], we definewi({σ }) as
the probability per unit time that the spini flips from σi to −σi , while the others remain
fixed. The master equation is

d

dt
p({σ }, t) = −

( N∑
i=1

wi({σ })
)
p({σ }, t)

+
N∑
i=1

wi({σ1, . . . ,−σi, . . . , σN })p({σ1, . . . ,−σi, . . . , σN }, t). (30)

Since we require the Boltzmann distribution to be a fixed point, the coefficientswi({σ }) are
of the form

wi({σ }) = 1
2

(
1 − σi tanh

(
βJ

∑
j∈V (i)

σj

))
(31)

whereV (i) is the set of neighbours of the sitei. If one denotes byp(t) the 2N vector of
p({σ }, t), equation (30) can be written as

d

dt
p(t) = Gp(t) (32)

where G is the Glauber matrix. We first show some properties of the matrixG. Since
the Boltzmann distribution is a steady state of the dynamics, its corresponding eigenvalue
is zero whatever the temperature. Even though it isnot symmetric, the matrixG can be
diagonalized and its eigenvalues are real; we give the proof of this statement here. The
Glauber matrix satisfies a detailed balance which means thatGα,βp

(0)
β = Gβ,αp

(0)
α where

p(0) is the Boltzmann distribution. As a consequence

(p(0)α )
−1/2Gαβ(p

(0)
β )

1/2 = (p(0)β )
−1/2Gβα(p

(0))
α )1/2. (33)
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Let us define a matrixM such that

Mαβ = (p(0)α )
−1/2Gαβ(p

(0)
β )

1/2. (34)

ThenM is symmetric. Letp be a right eigenvector of the Glauber matrix. Then∑
β

Gαβpβ = λpα (35)

is equivalent to∑
β

Mαβ(p
(0)
β )

−1/2pβ = λ(p(0)α )
−1/2pα (36)

so that(p(0)α )
−1/2pα is an eigenvector ofM. We conclude thatG is diagonalizable, and that

all of its eigenvalues are real.
The spectrum in the infinite temperature limit can be understood in the following manner.

If we define a state vector|ψ〉 by

|ψ〉 =
∑
{σ }
f (({σ })|σ1〉 ⊗ · · · ⊗ |σN 〉 (37)

then its dynamics are

d

dt
|ψ〉 = −N

2
|ψ〉 + 1

2

N∑
i=1

σxi |ψ〉 (38)

so that the eigenvalues of the Glauber matrix at infinite temperature are of the form

λ = −N
2

+ 1

2

N∑
i=1

µi (39)

whereµi = ±1. The spectrum in the infinite temperature limit is composed of levels at
integer values between−N and 0, with a degeneracy given by the binomial coefficients.

For bipartite lattices, such as the square lattice of the Cayley tree, the spectrum of the
matrix G is symmetric; more specifically ifλ belongs to the spectrum, then−N − λ is an
eigenvalue too. We give the proof of this statement now. LetX{σ } be an eigenvector of
M, with an eigenvalueλ:

λX{σ } = −
N∑
i=1

1

2
(1 − σi tanh(βJhi)X{σ } +

N∑
i=1

1

2 coshβJhi
X{σ1, . . . ,−σi, . . . , σN }

(40)

wherehi is defined by

hi =
∑
j∈V (i)

σj . (41)

Let Y {σ } be defined as

Y {σ } = (−1)ν{σ }X{σ̃ } (42)

whereν{σ } is the number of up spins in the configuration{σ }. {σ̃ } is deduced from{σ } by
flipping the spins of one of the two sublattices. Then,

(MY ){σ } = −
N∑
i=1

1
2(1 − σi tanh(βHhi))(−1)ν{σ }X{σ̃ }

+
N∑
i=1

(−1)ν{σ1,...,−σi ,...,σN }

2 cosh(βJhi)
X{σ̃1, . . . ,−σ̃i , . . . , σ̃M}
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= (−1)ν{σ }
[

−
N∑
i=1

1
2(1 + σ̃i tanh(βJhi))X{σ̃ }

−
N∑
i=1

1

2 cosh(βJhi)
X{σ̃1, . . . ,−σ̃i , . . . , σ̃N }

]
(43)

= − (N + λ)(−1)ν{σ }X{σ̃ } = −(N + λ)Y {σ }. (44)

Given an eigenvectorX for the eigenvalueλ, we have constructed an eigenvectorY for
the eigenvalue−N − λ.

The difference between (32) and the Schrödinger equation is that quantum mechanics
preserves the scalar product which results in Hermitian Hamiltonians. Furthermore, the
physical states ‘reside’ in a Hilbert space, and each state of this Hilbert space is physical.
In the case of the Glauber matrix there is no such vectorial space; more specifically, the sum
of two probability distributions is not a probability distribution. However, some quantities
are conserved by the dynamics. It is easy to show that the eigenvectors ofG for the non-zero
eigenvalues have the property that∑

{σ }
p{σ } = 0. (45)

This is a simple consequence of the fact that the Glauber matrix preserves the quantity∑
{σ }

p{σ }. (46)

Figure 7. Spectrum of the Glauber matrix at a given temperature for az = 3 Cayley tree with
two generations. The inverse temperature isβ = 2. The spectrum is symmetric with respect to
the λ = −N/2 line. The clusters collapse at integer values.

6.2. Spectrum of the Glauber matrix at low temperature

The spectrum of the Glauber matrix at low temperature is plotted in figure 7. We see that
the eigenvalues collapse around integers. The reason why this is the case is that, in the case
z = 3, the local field never vanishes on any site. Since the extra diagonal coefficients have
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the form 1/ cosh(βhi), wherehi is the local field on sitei, the Glauber matrix is diagonal
in the zero temperature limit, with integer coefficients. This property is also valid on any
graph for disordered systems, where the local field also never vanishes. For a detailed study
of the spectral properties of the Glauber matrix, see [25].

6.3. Realization of the Glauber dynamics

We now diagonalize the Glauber matrix in order to determine the dynamics of the model
in an explicit fashion. Letuα be the eigenvectors ofG: Guα = λαuα, and letP be the
passage matrix from the natural basis of pure stateseα to the basisuα:

uα =
∑
β

Pαβeβ. (47)

We look for the temporal evolution of the stateseα. At the initial time (t = 0)

pα(0) = eα =
∑
β

P−1
αβuβ (48)

and att > 0, the state is a mixture of pure states and is given by

pα(t) =
∑
β

P−1
αβ eλβ t

∑
γ

Pβγeγ . (49)

We can easily compute the magnetization ofpα(t). We applied this procedure to the case of
a tree with one generation. The evolution of the magnetization of the 16 pure states is plotted
in figure 8 at low temperature. Of course, on very long time scales, the magnetization of all
the states relaxes to zero, due to the fact that the eigenvalues associated with the symmetry-
breaking state are not strictly zero. The evolution of the pure states indicates the existence
of metastable states, which are the precursors of the metastable states present for larger
values of the number of generations.

Figure 8. Evolution of the magnetization of the 16 pure states of the tree with one generation.
The inverse temperature isβ = 3. Metastable states appear to be present even for such a small
size. The insert represents the same curve at short time scales, which shows the transient regime
from the natural basis of pure states to the metastable states.
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6.4. The factorization approximation

We recover the bulk critical temperature by considering the asymptotics of a simplified
Glauber dynamics. Glauber has shown [24] that one can replace the 2N variables of
the linear dynamics by a hierarchy ofN , nonlinear, coupled equations for the correlation
functions. This procedure is very similar to the transformation of the Liouville equation
into the BBGKY hierarchy in the kinetic theory. The first equation of the hierarchy is

d

dt
qi(t) = −qi(t)+

〈
tanh

(
βJ

∑
j∈V (i)

σj

)〉
. (50)

In this expression,q = 〈σ 〉 andV (i) is the set of neighbours of sitei. In the case of a
one-dimensional chain, one can use the fact that

〈tanhβJ (σi−1 + σi+1)〉 = 1
2 tanh(βJ )(qi−1 + qi+1) (51)

and one gets a closed equation for the one-point correlation functions. It is also clear that the
whole hierarchy decouples, and that one can use this decoupling to integrate the dynamics.
In the case of az = 3 tree, one has to take into account the fact that the sites inside the tree
have three neighbours; by contrast the leaves have one neighbour. For this coordination,

tanhβJ (σ1 + σ2 + σ3) = α(σ1 + σ2 + σ3)+ γ (σ1 + σ2 + σ3)
3 (52)

where the coefficientsα andγ are determined by

α = 1
24(27 tanhβJ − tanh 3βJ ) (53)

γ = 1
24(tanh 3βJ − 3 tanhβJ ). (54)

We can thus obtain the first equation of the hierarchy in the case of thez = 3 tree. For the
sites with three neighbours,

d

dt
qi = −qi + (α + 7γ )

∑
j∈V (i)

qj + 6γ

〈 ∏
j∈V (i)

σj

〉
. (55)

For the leaves of the tree
d

dt
qi = −qi + qj tanhβJ (56)

wherej is the neighbour ofi. The factorization approximation consists in decoupling the
third-order correlations into〈 ∏

j∈V (i)
σj

〉
=

∏
j∈V (i)

qj . (57)

This approximation leads to the bulk behaviour in the high temperature phase and in the
vicinity of the transition. We start from a configuration of spins such thatqi(0) = qj (0) if
the sitesi andj belong to the same generation. Then, fort > 0, qi(t) = qj (t) if we work
with the factorized dynamics. The factorized dynamics depends only onn variables, one
per generation, and is

dqn
dt

= −qn + 3(α + 7γ )qn−1 + 6γ q3
n−1

dqi
dt

= −qi + (α + 7γ )(2qi−1 + qi+1)+ 6γ q2
i−1qi+1

dq1

dt
= −q1 + q2 tanhβJ

(58)
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wherei runs from 2 ton−1. The equilibrium properties are calculated from the asymptotic
values of the dynamics. We note that the factorized dynamics possesses a non-trivial
fixed point for a finite-size system, whereas the complete dynamics possesses only the
Boltzmann distribution as a fixed point. The asymptotics of the factorized dynamics is
found to reproduce quite well the bulk properties of the tree. In figure 9,qn(+∞) is plotted
as a function of the inverse temperature. This curve is in agreement with the fact that the
central spin exhibits a mean-field-like transition atβc ' 0.54. We also plotted the asymptotic
magnetization of them generations which are closest to the central spin. It is clear that
the predictions of the factorized dynamics are qualitatively wrong as soon as one goes out
from the centre. For instance, it is clear that the entire tree does not develop a transition at
β = βc. We note that, in equations (58), the transition temperature is determined entirely by
the stability of the zero fixed point of the linear problem. BelowTc, the largest eigenvalue
of the linear problem is positive, and negative aboveTc. As the Ginzburg–Landau theory,
the nonlinear terms are responsible for the maximum bound on the dynamical variables in
the low-temperature phase.

Figure 9. Expectation value of the central spin in the simplified dynamics, as a function of the
inverse temperature. The transition temperature is in agreement with the valueβC ' 0.54. The
shape of the curve near the transition is in agreement with the existence of a mean-field-like
transition for the central spin. We also plotted the expectation value of the magnetization of the
m closest to the origin slices of spins, in the factorization approximation, form = 3, 4, 5, 6, 7,
8, 9, 10.

7. Monte Carlo dynamics

7.1. Relaxation of a single kink

We begin by considering the case of a single kink and look for the relaxation of this
excitation at low temperatures. Let us callK the set of descendants of the kink. At time
t = 0, the configuration of kinks is such thatσi = −1 is i ∈ K and σi = 1 if i 6∈ K.
We follow the magnetization of the spins ofK as a function of time, for various sizes
of K. The result is plotted in figure 10. The rapid relaxation at small times is attributed
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Figure 10. Magnetization relaxation of a single kink. Initially, all the spins of az = 3, n = 10
tree are up, and one creates a kink. We calln0 the number of generations involved in the kink.
If n0 = 1, the kink has only one spin, ifn0 = 2, the kink has 7 spins, etc. We follow the
magnetization of this domain as a function of time. The unit time is one Monte Carlo Step
(MCS). One MCS corresponds to repeatingN times the process which consists in choosing one
spin at random among theN sites, and changing or not changing its direction, according to
the Boltzmann distribution. The curves are averaged over 50 different Monte Carlo runs of the
dynamics.

to the fact that the initial state is not thermalized; the thermalization occurs at small time
scales compared to the collective processes of crossing the barrier. We define the typical
relaxation timeτ as the time scale associated with the vanishing of the magnetization. In
figure 11 we have plotted the logarithm of this relaxation time, lnτ , as a function of the
number of generationsnK in a kink K. The points are approximately aligned, indicating
that the Arrhenius law

τ ∼ τ0 exp

(
βλ
z − 2

2
n

)
(59)

is well satisfied. The caseλ = 1 corresponds to the relaxation of ann-half-space tree where
the ancestor is free. However, in our case, the ancestor isnot free since the domainK is
connected to the remaining up spins. The barrier height is essentially the same as in the
caseλ = 1, but the number of paths to reverse the magnetization is changed.

7.2. AC susceptibility

Experimentally, the AC nonlinear susceptibility has been a very useful probe of glassiness
[26] since the third-order susceptibility couples to the Edwards–Anderson order parameter,
and we can apply the same techniques numerically to study the tree problem that we are
discussing here. In parallel with what is done experimentally, a small AC external field
H(t) = h sinωt is applied to the spin system, and we measure the magnetization response,
expanded into its Fourier components

M(ω, t) =
∑
k>0

θ ′
k sinkωt + θ ′′

k coskωt (60)
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Figure 11. Logarithm of the relaxation time as a function of the number of generations in the
kink. The relaxation time is defined from the cancellation of magnetization on figure 10. The
points are approximately aligned, which is in agreement with the Arrhenius law of equation (59).

which has only odd harmonics. In practice, we let the system relax for four periods and we
take measurements only during the fifth one. The in-phase susceptibilities are related to the
in-phase Fourier coefficients as [26]

θ ′
1 = χ ′

1h+ 3
4χ

′
3h

3 + 5
8χ

′
5h

5 + 35
64χ

′
7h

7 + · · · (61)

θ ′
3 = 1

4χ
′
3h

3 + 5
16χ

′
5h

5 + 21
64χ

′
7h

7 + · · · (62)

θ ′
5 = 1

16χ
′
5h

5 + 7
64χ

′
7h

7 + · · · (63)

θ ′
7 = 1

64χ
′
7h

7 + · · · . (64)

Since all the nonlinear susceptibilities are divergent at the critical temperature of a spin
glass [26], we must include all the measurable higher-order harmonics in order to properly
include their influence on the lower ones [26].

The susceptibilitiesχ ′
1 andχ ′

3 are plotted as a function of temperature in figures 12 and
13 respectively for a number of frequencies. Bothχ ′

1 andχ ′
3 display maxima, where that of

the latter is more pronounced; in a ‘real’ spin glass in the thermodynamic limit one would
expectχ ′

1 to have a maximum, andχ ′
3 to diverge. We note thatχ ′

3 is negative near its
maximum, which agrees with experiments on spin glasses [26]. The frequency dependence
of the position of the maximum inχ ′

1 andχ ′
3 is also consistent with experiment [26], since

the temperature for whichχ ′
1 andχ ′

3 are maximum increases with frequency. Thus this study
strongly suggests that the Ising model on a finite Cayley tree exhibits glassy-like behaviour
at low temperatures; we shall be more specific when we analyse the Edwards–Anderson
susceptibility of this model.

7.3. Autocorrelation functions and ageing

A good test used to determine the presence of glassiness in a given model involves the
computation of the autocorrelation functions [27] to determine whether they exhibit ageing.
Ageing is the signature of memory effects and broken ergodicity. The autocorrelation
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Figure 12. χ ′
1 susceptibility on the Cayley tree. The tree has 10 generations. The amplitude

of the magnetic field is 0.1. The curves are averaged over 50 initial configurations of spins,
generated at equilibrium. One has to find a compromise between the amplitude of the magnetic
field and the number of configurations to be averaged over, to have a good signal/noise ratio.
The curves correspond to a period of the magnetic field equal to 500 MCS, 1000 MCS and
1500 MCS.

Figure 13. χ ′
3 susceptibility on the Cayley tree. The tree has 10 generations. The amplitude

of the magnetic field is 0.1. The curves are averaged over 50 initial configurations of spins,
generated at equilibrium. The curves correspond to a period of the magnetic field equal to
500 MCS, 1000 MCS and 1500 MCS.

functions are

C(t, tw) = 1

N

N∑
i=1

〈σi(t + tw)σi(tw)〉 − 〈σi(t + tw)〉〈σi(tw)〉 (65)



5792 R Mélin et al

Figure 14. Spin autocorrelation functions of thez = 3 Cayley tree aboveTg . The unit time
is one MCS, the inverse temperature isβ = 0.5, and the averages are taken over 100 random
initial configurations. The autocorrelation functions decrease rapidly witht and are independent
of tw .

Figure 15. Spin autocorrelation functions of thez = 3 Cayley tree belowTg . The unit time is
one MCS, the inverse temperature isβ = 2 and the averages are taken over 100 random initial
configurations. The autocorrelation functions depend on the waiting time, andincreasewith the
waiting time, which is the signature of glassiness.

where the sample is rapidly quenched belowTg from a disordered high-temperature state.
The Monte Carlo dynamics runs from timest = 0 to t = tw; the autocorrelations are
measured att = tw where an average is taken over the initial configurations.

The autocorrelations in the high-temperature phase are plotted on figure 14. They
decrease rapidly with the timet and are independent of the waiting time, as expected; this



Glassy behaviour in the ferromagnetic Ising model 5793

is simply a check of our code. Figure 15 represents the autocorrelation functions belowTg.
The autocorrelationsincreasewith increasingtw, indicating the presence of ageing. Such
behaviour has been observed in a wide class of glassy models, including the fully frustrated
hypercubic model [27].

8. The Edwards–Anderson order parameter and susceptibility

We have thus shown the existence of metastability and long time scales, and the existence
of glassiness. It is thus interesting to study the Edwards–Anderson order parameter and
susceptibility. The recursive structure of the Cayley tree permits us to compute the Edwards–
Anderson order parameter and susceptibility at all temperatures. This calculation has already
been done for the±J model with uncorrelated boundary conditions in [10, 14]. These
authors found an Almeida–Thouless line for their spin glass model, and we wish to use the
same technique to analyse the model discussed here. In order to compute the Edwards–
Anderson order parameter and susceptibility, we consider one tree plus one replica, with an
inter-replica couplingR. If {σ } and{σ ′} are the spin configurations of the two replicas, the
Hamiltonian reads

H = −J
∑
〈i,j〉
(σiσj + σ̃i σ̃j )− R

N∑
i=1

σiσ̃i + h

N∑
i=1

(σi + σ̃i). (66)

As usual with free boundary trees, we have to distinguish between the properties of the
central spin and the whole tree; in what follows we discuss both cases below.

8.1. The whole tree

The partition function can be calculated by the construction of figure 2, even in the presence
of the inter-replica coupling. We take derivatives of the partition function with respect to
the inter-replica coupling,R, resulting in the Edwards–Anderson order parameter

qEA = 1

N

〈 N∑
i=1

σiσ̃i

〉
= 1

N

∂

(∂βR)
lnZ(R = 0) (67)

and the Edwards–Anderson susceptibility

χEA = 1

N

(〈( N∑
i=1

σiσ̃i

)2〉
−

〈 N∑
i=1

σiσ̃i

〉2)
= 1

N

∂

∂(βR)2
lnZ(R = 0). (68)

We now letZ(n)σσ ′ be the conditional partition function of ann-half-space tree with respect
to the ancestor’s spinsσ andσ ′. It is clear that

Z
(n+1)
++ = eβRe2βH (e2βJZ

(n)
++ + Z

(n)
+− + Z

(n)
−+ + e−2βJZ

(n)
−−)

z−1 (69)

Z
(n+1)
+− = e−βR(Z(n)++ + e2βJZ

(n)
+− + e−2βJZ

(n)
−+ + Z

(n)
−−)

z−1 (70)

Z
(n+1)
−+ = e−βR(Z(n)++ + e−2βJZ

(n)
+− + e2βJZ

(n)
−+ + Z

(n)
−−)

z−1 (71)

Z
(n+1)
−− = eβRe−2βH (e−2βJZ

(n)
++ + Z

(n)
+− + Z

(n)
−+ + e2βJZ

(n)
−−)

z−1. (72)

The initial conditions of the recursion areZ0
++ = eβRe2βH , Z0

+− = Z0
−+ = e−βR and

Z0
−− = eβRe−2βH . For alln, we can show thatZ(n)+− = Z

(n)
−+ and we then defineZ(n)1 ≡ Z

(n)
++,

Z
(n)

0 ≡ Z
(n)
+− = Z

(n)
−+ andZn−1 ≡ Z

(n)
−−. Using this notation, the recursion relations become

Z
(n+1)
1 = eβ(R+2H)(e2βJZ

(n)

1 + 2Z(n)0 + e−2βJZ
(n)

−1)
z−1 (73)
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Z
(n+1)
0 = e−βR(Z(n)1 + 2 coshβJZ(n)0 + Z

(n)

−1)
z−1 (74)

Z
(n+1)
−1 = eβ(R−2H)(e−2βJZ

(n)

1 + 2Z(n)0 + e2βJZ
(n)

−1)
z−1 (75)

which can be used to obtainqEA andχEA in a straightforward fashion.qEA andχEA are
plotted in figures 16 and 17 respectively forn = 10 andn = 80. In both cases, the curves
corresponding to these two system sizes are similar, even though the number of sites is
small for n = 10 (2047 sites) and macroscopic forn = 80 (4.02 moles of sites). We
believe that this behaviour is related to the very slow variation of the glass temperature
Tg with the system size. In figure 17 we see clearly thatχEA does not diverge in the
thermodynamic limit but rather exhibits a maximum, characteristic of a finite-size effect,
even in the macroscopic regime.

Figure 16. Edwards–Anderson order parameter for the whole spin system. The coordination
is z = 3. The Edwards–Anderson order parameter is plotted as a function of temperature for
n = 10 (2047 spins) andn = 80 (4.02 moles of spins). The two curves nearly coincide.

8.2. The central spin

Following the authors of [10, 14], we note that

Z(n) = Z
(n)

1 + 2Z(n)0 + Z
(n)

−1 (76)

Q(n) = 1

Z(n)
(Z

(n)

1 − 2Z(n)0 + Z
(n)

−1). (77)

The Edwards–Anderson order parameter of the central spin isq̃EA = Q(n)/Z(n), and the
Edwards–Anderson susceptibility is

χ̃
(n)
EA = ∂q̃EA

(∂βR)
(R = 0) (78)

where the tilde symbol denotes quantities with respect to the central spin. The ‘central
spin’ Edwards–Anderson susceptibilitỹχEA is plotted in figure 18 for various system sizes.
Though we have seen that finite-size effects are negligible for the whole tree, they become
crucial for the central spin. More specifically, the maximum values of the Edwards–
Anderson susceptibility of the central spin does not increase (see figure 19) as a function of
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Figure 17. Edwards–Anderson susceptibility for the whole spin system. The coordination is
z = 3. The Edwards–Anderson susceptibility is plotted as a function of temperature forn = 10
(2047 spins) andn = 80 (4.02 moles of spins). The two curves nearly coincide.

Figure 18. Edwards–Anderson susceptibility for the central spin as a function of temperature
for n = 5, 10, 15, 20, 25, 30, 35, 40 generations. The coordinationz = 3.

coordinationz. As the system size becomes macroscopic, the glass temperatureTg depends
more on the coordination than on the number of generation; in particular, it increases with
increasing coordination consistent with equation (15).

8.3. Central spin in a magnetic field

In the Sherrington–Kirkpatrick model, glassy behaviour persists even in the presence of a
magnetic field; the Edwards–Anderson susceptibility diverges with an exponentγ = 1



5796 R Mélin et al

Figure 19. Edwards–Anderson susceptibility for the central spin as a function of temperature
for z = 3, 4, 5. The number of generations isn = 20.

Figure 20. Edwards–Anderson susceptibility of the central spin in a magnetic field as a function
of temperature, for different sizes. The number of generations isn = 2, 3, 4, 5, 6, 7, 8, 9, 10,
30. The magnetic field isH = 0.05.

through the Almeida–Thouless line. We have studied the behaviour of the Ising NN
ferromagnet (FM) on a Cayley tree ferromagnetic model with free boundary conditions with
an applied magnetic field. Specifically we studied the variation of the Edwards–Anderson
susceptibility in a field as a function of system size. As displayed in figure 20, the maximum
of the Edwards–Anderson susceptibility as a function of temperature depends on the size.
In figure 21, we show the locus of the maxima ofχ̃EA for different magnetic fields as
a function of temperature. The Edwards–Anderson susceptibility decreases strongly with
increasing magnetic field, indicating the vanishing of glassy behaviour consistent with the
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Figure 21. Maxima of χEA as a function of temperature for different values of the magnetic
field. The system size isn = 10 generations. The magnetic fields areH = 0.025,H = 0.05,
H = 0.1, H = 0.15,H = 0.2.

exponential decay of the cross over magnetic field of equation (B28), and also with the fact
that the local maxima of the magnetization distribution in a magnetic field disappear very
rapidly as a magnetic field is switched on (see figure 5).

9. Discussion

In summary, we have studied the static and the dynamical properties of the nearest-neighbour
Ising model on a Cayley tree. At zero field, we find that this system displays glassy
behaviour below a size-dependent temperature that scales inversely with the logarithm of
the number of generations; thus its glassy behaviour persists for a finite but macroscopic
number of sites. Because the ratio of the number of surface to bulk sites,Ns/N , and the
strength of the external field,h, play a key role in the physical behaviour of the resident
spin system, the different thermodynamic limits associated with the values ofNs/N and
h are characterized; the crossover temperature,Tg, is associated with fixedNs/N in the
limit of vanishing applied field. Physically well-defined large domains of flipped spins
develop atTg; at this temperature the probability of nested spin clusters is small. The
largest energy barriers associated with overturning these domains is determined to scale
logarithmically with the number of sites at zero temperature, a result that should be valid at
finite, low temperatures if overlap between spin clusters does not occur. A dynamical study
indicates the appearance of metastable states and long relaxation times at low temperatures.
The autocorrelations are computed after a waiting time using Monte Carlo dynamics; they
exhibit ageing forT < Tg. The temperature variations of the coefficients ofχ ′

1 and χ ′
3

are also determined and they agree with the existence of finite-size glassiness. Finally the
Edwards–Anderson susceptibility of the entire tree displays a maximum (but no divergence)
that evolves slowly with increasing system size; that of the central spin has much more
marked size-dependence.

We have thus performed a detailed characterization of the low-temperature phase of a
short-range periodic spin model resident on a Cayley tree. In this particular case, we have



5798 R Mélin et al

found that it displays finite-size glassy behaviour that remains for a macroscopic number
of sites; perhaps it is best to characterize this low-temperature phase as a very viscous spin
liquid. We note that neither intrinsic disorder nor frustration exist due to the initial Ising
Hamiltonian; the possibility of many low-temperature ‘cluster’ states separated by very high
energy barriers is a direct consequence of the unusual topology of the Cayley tree. In many
ways we hope that this is a warm-up exercise towards the study of spin models on more
complicated non-Euclidean lattices, e.g. on a constant triangulation associated with a surface
of negative curvature, where the intrinsic geometry of the host may lead to the possibility
of glassiness in the absence of both disorder and frustration.

Appendix A

We propose another derivation of the magnetization distribution for the tree. LetZ(β, h)

be the partition function of the spin system in the presence of an external field. Then

P(M) = 1

Z(β, h)

∑
{σ }
δ

(
M −

N∑
i=1

σi

)
exp

(
β

(
J

∑
〈i,j〉

σiσj + h

N∑
i=1

σi

))
. (A1)

Using the Fourier representation of the delta function

δ

(
M −

N∑
i=1

σi

)
= 1

2π

∫ 2π

0
dλ eiλMe−iλ

∑N
i=1 σi (A2)

we obtain

P(M) = 1

2π

∫ 2π

0
dλeiλM Z(β, h− iλ/β)

Z(β, h)
(A3)

where we have used the analytic continuation of the partition function for complex magnetic
fields. This method is useful provided one knows how to calculate the partition function,
which is certainly feasible on a tree. We proceed by decimation, starting from the border
of then-half-space tree. For future purposes, we denoteZn(β, h, hn) the partition function
of an n-half-space tree with a magnetic fieldh acting on the spins of the generations 0 to
n− 1, andhn on the spins of the generationn. We first consider the situation wherez − 1
spinsσ1, . . . , σz−1 are connected to an ancestor6. An external fieldhn acts on the spins
σi . The partition function of this system is

z(6) =
( ∑

σ

eβJ6σeβhnσ
)z−1

. (A4)

The summations overσi have been factored out since there are no loops. We next write
z(6) under the formz(6) = N exp(βT hn). Since there are two equations (one for6 = 1
and one for6 = −1) for two parameters (N andh), the parametersN andT hn exist, are
unique, and are determined by

N 2 = z(+)z(−) = (4(cosh2(βJ )+ sinh2(βhn)))
z−1 (A5)

T hn = 1

2β
ln

(
z(+)
z(−)

)
= z − 1

2β
ln

(
cosh(β(J + hn))

cosh(β(J − hn))

)
. (A6)

Coming back to the partition function on the Cayley tree, we have

Zn(β, h, hn) = (4(cosh2(βJ )+ sinh2(βhn)))
(z−1)n−1/2Zn−1(β, h, h+ T hn). (A7)
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The last term of the recursion corresponds to the partition function of the ancestor, which
is simply

Z1(β, h) = 2 cosh(βT nh). (A8)

It is straightforward to compute the partition function using these relations and to perform the
Fourier transform (A3) in order to obtain the probability distribution of the magnetization.

Appendix B

We present here the calculations corresponding to section 2.2. Details of the calculation of
the partition function are given in appendix A, and we obtain

〈M(n,m, h)〉 =
n−1∑

i=n−m
(z − 1)n−i

sinβhi coshβhi
cosh2 βJ + sinh2 βhi

dhi
dλ
(λ = 0)

+ tanhβhn
dhn
dλ
(λ = 0). (B1)

The last term is the contribution of the ancestor to the average magnetization;hi is the total
field at generationi which is the sum of the external, the source and the recursive (of (5)
fields (h, λ andhind ) respectively).

We do not treat the iteration ofhind exactly, but approximate it as described below.
From the iteration (5) we can deduce the shape ofhindi+1 as a function ofhi , which is plotted
in figure 3. If β < βc, the slope at the origin is less than unity, whereas it is larger than
unity for β > βc. Moreover forβ > βc there is one non-trivial fixed point, for which
hindi+1 = hi = h∗ which depends only on the temperature. This behaviour suggests that
the iteration can be approximated by linearizinghi+1(hi) in the vicinity of hi = 0 and of
hi = h∗. More precisely, we deduce from (5) that

dhindi+1

dhn
= (z − 1)

sinhβJ coshβJ

cosh2 βJ + sinh2 βhi
(B2)

and define new variables,η1 andη2, such that

dhindi+1

dhi
(hi = 0) = (z − 1) tanhβJ ≡ 1 + η1 (B3)

dhindi+1

dhi
(hi = h∗) ≡ 1 − η2 (B4)

where η1 ∈ [0, z − 2] and η2 ∈ [0, 1] and we note thatη1 and η2 depend only on the
temperature. We then express the complete recursion by

hindi+1 = (1 + η1)hi (B5)

or

hindi+1 = η2h
∗ + (1 − η2)hi. (B6)

The first linearization corresponds tohi ∈ [0, hc] and the second one tohi ∈ [hc, h∗], where

hc = η2

η1 + η2
h∗. (B7)

If λ = 0, iteration of the total magnetic fieldhn leads to different results depending on the
relative magnitude ofi (generation) compared with

nc(h) =
[

1

ln(1 + η1)
ln

(
η1η2

η1 + η2

h∗

h
+ 1

)]
(B8)
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where [] denotes the integer part; fori 6 nc(h)

hi = h

η1
((1 + η1)

i+1 − 1) (B9)

and if i > nc(h)

hi = h∗ + h

η2
+

(
hnc − h∗ − h

η2

)
(1 − η2)

i−nc . (B10)

There are therefore three regimes which we can study corresponding to the application
of large (I), intermediate (II) and vanishing (III) fields on the finite Cayley tree; more
specifically they correspond to the conditions 06 nc 6 n−m (I), n−m+ 1 6 nc 6 n (II)
andnc > n (III), respectively, wherenc is defined in equation (B8).

Appendix B.1. Regime I: 06 nc 6 n−m—large fields

We now determine the average magnetization as given by equation (B1) in regime I. Using
the approximation discussed in the previous section, we write

dhi
dλ
(λ = 0) = 1

η2
(1 − (1 − η2)

i−n+m+1). (B11)

If 0 6 hi 6 hc or i < nc, we can approximate

sinhβhi coshβhi
cosh2 βJ + sinh2 βhi

' a1hi (B12)

where

a1 = β

cosh2 βJ
(B13)

and if hi > hc or n > nc, we use

sinhβhi coshβhi
cosh2 βJ + sinh2 βhi

' a2(hi − h∗)+ b2 (B14)

where

a2 = cosh2 βJ cosh2 βh∗ + sinh2 βJ sinh2 βh∗

(cosh2 βJ + sinh2 βh∗)2
(B15)

b2 = β
sinhβh∗ coshβh∗

cosh2 βJ + sinh2 βh∗ . (B16)

It is now straightforward to insert these expressions into equation (B1) for the average
magnetization. Since we normalize by the number of sites

Nm = 1 + (z − 1)+ · · · + (z − 1)m = (z − 1)m+1 − 1

z − 2
(B17)

it is reasonable to neglect the contribution of the ancestor. We obtain

〈M(n,m, h)〉 = 1

η2

[(
b2 + a2

h

η2

)
Nm + (z − 1)m

1 − ((1 − η2)/(z − 1))m

1 − ((1 − η2)/(z − 1))(
−

(
b2 + a2

h

η2

)
(1 − η2)+ a2(hnc − h∞)(1 − η2)

n−m−nc
)

− a2(hnc − h∞)(z − 1)m(1 − η2)
n−m−nc+1 1 − ((1 − η2)

2/(z − 1))m

1 − ((1 − η2)2/(z − 1))

]
(B18)
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whereh∞ = h∗ + h/η2. We can now discuss the different thermodynamic limits. First we
note that ifn → ∞, m → ∞ andn−m → ∞, the thermodynamic limit of the normalized
magnetization reads

lim
〈M(n,m, h)〉

Nm
=

(
b2 + a2

h

η2

)
z − 1

z − 2 + η2
. (B19)

However, if we take adifferent thermodynamic limit, withn−m → b, whereb is a constant
thickness boundary, we obtain

lim
〈M(n,m, h)〉

Nm
=

(
b2 + a2

h

η2

)
z − 1

z − 2 + η2

−a2(h∞ − hnc )
(z − 1)(z − 2)(1 − η2)

b−nc

(z − 2 + η2)(z − 1 − (1 − η2)2)
(B20)

whereb = n− nc + 1. The absolute value of the corrective term decreases as the thickness
of the boundary increases since|1 − η2| < 1.

Appendix B.2. Regime II:n−m+ 1 6 nc 6 n—intermediate fields

Again we calculate the average magnetization (B1) this time in the regimen−m+1 6 nc 6 n

where we use the relations (B12) and (B14) from the previous section. Furthermore we
need to approximate the expression dhi/dλ for λ = 0. If n−m 6 i 6 nc, we have

dhi
dλ
(λ = 0) = 1

η1
((1 + η1)

i−n+m+1 − 1) (B21)

and if i > nc,

dhi
dλ
(λ = 0) = 1

η2
+ a(1 − η2)

i−nc (B22)

where

a = 1

η1
(1 + η1)

nc−n+m+1 − 1

η1
− 1

η2
. (B23)

We have used

hi = h∗ + h+ λ

η2
+ (1 − η2)

i−nc
(
hnc (λ)− h∗ − h+ λ

η2

)
(B24)

with

hnc (λ) = hnc (0)+ λ

η1
((1 + η1)

nc−n+m+1 − 1). (B25)

We insert these expressions into (B1) and sum the full geometric series. We note that the
thermodynamic limit can only be taken withn − m → b, where againb is a constant.
We find that the dominant behaviour at small magnetic fieldh depends on the temperature.
Let T ′ be the temperature such that tanhβ ′J = 1/

√
z − 1. Then if T ′ < T < Tc the

dominant term in the normalized magnetization is linear inh with corrections inhα, where
α = ln(z − 1)/ ln(1 + η1) − 1; by contrast ifT < T ′ the leading term is of orderhα.
We do not write explicitly the corresponding expressions since they are tedious and do not
contribute further to the present discussion.
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Appendix B.3. Regime III:nc > n—vanishing fields

In this regime, we approximate the average magnetization by inserting (B12) and (B21) into
(B1) which yields

〈M(n,m, h)〉 =
n−1∑

i=n−m
(z − 1)n−ia1h

(1 + η1)
i+1 − 1

η1

(1 + η1)
i−n+m+1 − 1

η1
. (B26)

After summing the geometrical series, we obtain

〈M(n,m, h)〉
N(m)

= a1h

η2
1

z − 2

1 − (z − 1)−m−1

×
[

1 − (z − 1)−m

z − 2
− (1 + η1)((1 + η1)

b + 1)

z − 2 − η1

(
1 −

(
1 + η1

z − 1

)m)
+ (1 + η1)

b+2

(1 + η1)2 − z + 1

(
−1 +

(
(1 + η1)

2

z − 1

)m)]
. (B27)

We identify the crossover fieldhco ashn−1 = hc, that is

hco = h∗ η1η2

(η1 + η2)((1 + η1)n − 1)
(B28)

which is exponentially small inn. If we take the limit of largen andm but finite n − m,
we define the susceptibility per spin by

〈M(n,m, h)〉
N(m)

∼ hχ(m). (B29)

If T > T ′, whereT ′ is defined by tanh(β ′J )1/
√
z − 1, the susceptibility per spin tends to

a constant in the thermodynamic limit:

χ(m) → a1(z − 2)

η2
1

[
1

z − 2
− (1 + η1)((1 + η1)

b + 1)

z − 2 − η1
− (1 + η1)

b+2

(1 + η1)2 − z + 1

]
. (B30)

If T < T ′, the susceptibility per spin diverges exponentially in the thermodynamic limit:

χ(m) ∼ a1(z − 2)(1 + η1)
b+2

(1 + η1)2 − z + 1

(
(1 + η1)

2

z − 1

)m
(B31)

so that the susceptibility per spin is proportional to

χ(m) ∝ Nm(1 − 4me−2βJ ). (B32)

Appendix C

In this appendix we give the value of the energy barrierE(Tn,z) for a half-space treeTn,z
with n generations and a coordination number ofz for all sites except the root (coordination
z−1) and the leaves (coordination 1). We also give the energy barrierE(T ∗

n,z) for a complete
treeT ∗

n,z with n generations and a coordination number ofz for all sites except the leaves.
The derivation of the formula is due to Sebö and Preissmann, and is publishedin extenso
in [28]. Note that the same problem arises in the VLSI circuit conception! Generically
the problem of finding the lowest energy barrier isNP-complete, but the sub-problem of
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finding the lowest energy barrier of a tree is polynomial, and an explicit algorithm is given
hereafter. The value of the energy barriers is given by

E(Tn,z) =
⌈
n(z − 2)

2

⌉
+ 1 (n, z > 3)

E(T ∗
n,z) =

⌈
(n− 1)(z − 2)

2

⌉
+

⌈
z − 2

2

⌉
+ 1 (n, z > 3).

(C1)

In the above formuladxe denotes the lowest of the integers greater thanx. The
demonstration of these formulae is constructive. Firstly a lower bound forE is given.
Then an algorithm is described which produces a labelling of the sites. Flipping the spins
in the order of this labelling gives an energy barrier exactly equal to the lower bound. The
algorithm is recursive. It tries to produce an optimal labelling of the sites where the root
is labelledbefore the configuration of highest energy is reached. We call such a labelling
strong labelling. This extra constraint is useful when one appliesz times the algorithm on
a Tn,z to computeE(Tn+1,z), or when one applies the algorithm toTn,z and toTn−1,z to
computeE(T ∗

n+1,z). A strong labelling does not exist whenz andn are both odd as shown
in [28]. Let us now consider the case ofTn,z. Formula (C1) means that

• whenz is even the increment in energy when one goes fromTn,z to Tn+1,z is constant
and equal toz2 − 1;

• whenz is odd the increment in energy when one goes fromTn,z to Tn+1,z is alternatively
z−1

2 − 1 and z−1
2 .

We give now the algorithm in the case of evenz. The case of oddz is slightly more
complicated, but in the same spirit. ConsiderTn,z as being made ofz − 1 copies ofTn−1,z,
all of them connected to the site 0. Each spin is identified by two numbersk, i with
0 6 k < z − 1 and 06 i < Nn−1 (Nn is the number of sites ofTn,z). Let us noteπ a
strong labelling ofTn−1,z, andn0 the root of the( z−2

2 − 1)th copy ofTn−1,z. The following
labelling is a strong labelling ofTn,z:

(i) (0, π(0)), (0, π(1)), . . . , (0, π(Nn−1))

(ii) . . .
(iii) ( z−2

2 − 1, π(Nn)), ( z−2
2 − 1, π(Nn − 1)), . . . , ( z−2

2 − 1, π(n0))

(iv) 0
(v) ( z−2

2 − 1, π(n0 − 1)), ( z−2
2 − 1, π(n0 − 2)), . . . , ( z−2

2 − 1, π(0))
(vi) ( z−2

2 , π(0)), (
z−2

2 , π(1)), . . . , (
z−2

2 , π(Nn−1))

(vii) . . .
(viii) (z − 2, π(0)), (z − 2, π(1)), . . . , (z − 2, π(Nn−1)).
Note that in steps (i), (ii), (vii) and (viii) any admissible permutation can be used instead

of the strong labellingπ . It is shown in [28] that the above labelling is indeed an optimal
labelling and it can be used to implement a recursive algorithm to find a path between the
two ferromagnetic states.
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